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Abstract 

Implications of decision analysis (DA) on engineering design 
are important and well-documented. However, widespread 
adoption has not occurred. To that end, the authors recently 
proposed decision topologies (DT) as a visual method for 

representing decision situations and proved that they are 
entirely consistent with normative decision analysis. This paper 
addresses the practical issue of assessing the DTs of a 
designer using their responses. As in classical DA, this step is 
critical to encoding the DA’s preferences so that further 
analysis and mathematical optimization can be performed on 
the correct set of preferences. We show how multi-attribute 
DTs can be directly assessed from DM responses. 
Furthermore, we show that preferences under uncertainty can 
be trivially incorporated and that topologies can be constructed 
using single attribute topologies similarly to multi-linear 
functions in utility analysis. This incremental construction 
simplifies the process of topology construction. The methods 
are demonstrated using a design decision making problem of a 
welded beam. 

1. Introduction 

The notion that engineering design is a decision making 
process is well accepted and documented (see Howard (1989), 
Thurston (1991) and Hazelrigg (1998). However, despite all 
possible benefits, widespread use of decision making tools is 
impeded by the complexity of these tools to the average 
designer. Most practicing engineers are not trained in decision 
analysis or utility theory and as a result, they implement “best 
practices” when it comes to making decisions. Even when an 
expert attempts to elicit the DM’s preferences, errors are 
introduced, affecting the quality of decisions to be made. 
These errors may result from problems associated with stated 
and revealed preferences (Train, 2003). It is also possible that 
the facilitator (expert helping the DM to make the decision) 
overwhelms the DM with lottery questions to assess utility 
functions, particularly when the DM is not entirely comfortable 
giving responses to lottery questions. The authors have 
recently proposed an alternative approach based on Decision 
Topologies, which alleviates these issues with classical 
decision analysis and also offers many significant advantages 

(Pandey and Mourelatos, 2013). They also showed that DTs 
are entirely consistent with decision analysis at the limit. In this 
paper, we make theoretical advances in DTs by focusing on 
their assessment directly. We show that DTs can be 
constructed from single attribute topologies similarly to multi-
linear functions in utility analysis. This makes DT assessment 
simple. 

The paper is arranged as follows. Section 2 discusses decision 
topologies and Section 3 presents theoretical results in DT 
assessment. Section 4 describes a case study involving a 
welded beam demonstrating the topology assessment and the 
decision making process using the topology. Section 5 
concludes and discusses directions for future work. 

2. Decision Topologies 

What is a decision topology? 

A decision topology is a block diagram similar to the reliability 
block diagrams in reliability engineering (Figure 1) where a 
system is operational if its block diagram representation has a 
continuous path from one side of the diagram (input) to another 
(output). The decision topology extends this notion. If there are 
no paths from one end to the other, the DT is assigned a score 
of zero. Otherwise, all paths from one side of the diagram to 
the other are counted providing an overall score for the DT. 
This score is a positive linear transformation of the decision 
maker’s utility function, a claim that has been substantiated in 
Pandey and Mourelatos (2013). We provide a sketch of the 
proof later for continuity.  

We use a simple example to show how DTs work. Consider a 
car-purchasing decision where the attributes are fuel economy 
M in miles per gallon (mpg), acceleration A in seconds for 0 to 
60 mph, roominess R in cu. ft., price P in dollars, luxury L 
(acceptable/unacceptable) and color C 
(acceptable/unacceptable). Some attributes such as luxury and 
color, are not easy to define mathematically because they are 
subjective. Figure 1 shows an example DT. 



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
10 APR 2014 

2. REPORT TYPE 
Journal Article 

3. DATES COVERED 
  08-02-2014 to 12-03-2014  

4. TITLE AND SUBTITLE 
Enhancing Decision Topology Assessment in Engineering Design 

5a. CONTRACT NUMBER 
W56HZV-04-2-0001 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 
Vijitashwa Pandey; Zissimos Mourelatos; Matthew Castanier 

5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Oakland University,2200 N. Squirrel Road,Rochester,Mi,48309 

8. PERFORMING ORGANIZATION REPORT 
NUMBER 
; #24311 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
U.S. Army TARDEC, 6501 East Eleven Mile Rd, Warren, Mi, 
48397-5000 

10. SPONSOR/MONITOR’S ACRONYM(S) 
TARDEC 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 
#24311 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 
Submitted to SAE World Congress 2014 

14. ABSTRACT 
Implications of decision analysis (DA) on engineering design are important and well-documented.
However, widespread adoption has not occurred. To that end, the authors recently proposed decision
topologies (DT) as a visual method for representing decision situations and proved that they are entirely
consistent with normative decision analysis. This paper addresses the practical issue of assessing the DTs of
a designer using their responses. As in classical DA, this step is critical to encoding the DA’s preferences so
that further analysis and mathematical optimization can be performed on the correct set of preferences.
We show how multi-attribute DTs can be directly assessed from DM responses. Furthermore, we show that
preferences under uncertainty can be trivially incorporated and that topologies can be constructed using
single attribute topologies similarly to multi-linear functions in utility analysis. This incremental
construction simplifies the process of topology construction. The methods are demonstrated using a design
decision making problem of a welded beam. 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT 

Public 
Release 

18. NUMBER
OF PAGES 

8 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 



Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



Page 2 of 8 

 

 

Figure 1. Reliability block diagram (decision topology) in a hypothetical 
vehicle buying decision. 

The given DT can be interpreted using simple reliability 
engineering principles (Kapur and Lamberson, 1977). The 
algorithm for identifying topologies similar to the one above, 
and scoring them is based on our recent work towards 
identifying system topologies with limited information (Pandey 
and Mourelatos, 2012b) and evaluating a reliability block 
diagram using linear algebra operations (Pandey et al., 2012).  

2.1 Proof of consistency with decision analysis 

Many types of Multi-Attribute Utility Functions (MAUF) exist 
(e.g., multi-linear, linear, Cobb-Douglas, etc.) allowing for 
different tradeoff behaviors. We have shown how decision 
topologies are consistent with decision analysis by showing 
that the behavior of any continuously differentiable utility 
function which is monotonic in attributes can be modeled by 
decision topologies. This is in addition to binary attributes, 
which can be easily incorporated.  

 

Figure 2. A decision topology for a single attribute (superscript is not 
an exponent). 

Let us start with the single attribute case, where the objective 
is to find the score corresponding to an attribute level. We can 
represent the decision topology associated with an attribute 
visually as shown in Figure 2. The decision topology consists 
of blocks where each block tests the binary condition that the 

attribute level is greater than a partition 
j

iy of the attribute. If 

this is true, the block is considered active. The raw score for an 

attribute level iy is equal to the number of paths from right to 

left (or left to right) through the active blocks. For example, if
max

ii yy   all blocks will be active because all inequalities are 

satisfied. Similarly, if 
min

ii yy   none of the blocks will be 

active. For
maxmin

iii yyy  , a number of blocks less than 

im will be active. Figure 3 pictorially shows the score from a 

DT as the attribute level is steadily increased and the blocks 
become progressively active. 

Since utility functions are conventionally constrained between 

0 and 1, we can divide the score of an attribute level by 
im to 

obtain a normalized score which we refer to as score S. It may 
seem that the score will be linear in attribute level (akin to a 
linear utility function) but this is not true. The way the score 
varies with respect to an attribute depends on the chosen 
partitioning for the attribute. A non-uniform partitioning can be 
used to draw the topology. If the density of partitions around a 

particular value of 
iy  is proportional to the derivative of the 

utility function at that value of
iy , the normalized score will be 

equal to the utility value (Figure 3). This is guaranteed if

im  since the score approaches the Riemann sum 

under the utility density function (derivative of the utility 
function). A rigorous proof is given in Pandey and Mourelatos 
(2013).  

 

(a) 

 

(b) 

Figure 3. Comparison of a utility function with a decision topology 
score when the first partitioning of the attribute is uniform (a) or 

proportional to the local value of the derivative of the utility function (b). 
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<Low price limit 

<Mid price limit 

<High price limit 

>Low mpg limit 

>Mid mpg limit 

>High mpg limit 

Tradeoffs 

The multi-attribute case is less straightforward compared to the 
single attribute case. For this reason, we motivate the reader 
by first showing that tradeoffs are also represented in a 
topology when multiple attributes are present. Consider the 
mileage and price block of Figure 1. Assume that the two 
attributes have three levels simplistically designated as low, 
medium and high. A tradeoff structure can be introduced as in 
Figure 4 which expands upon the price-mpg block of Figure 1. 
Based on Figure 4, the decision maker will buy a vehicle that 
meets their low price requirements even if it gives low mpg (top 
path). Similarly, a vehicle that provides average mpg at 
average initial price is also acceptable (middle path). Finally, a 
costly vehicle will be acceptable if it provides high mpg (bottom 
path). 

Now we prove that the score determined from the topology is 
the same as that from a utility function. As before, we assume 
that the multi-attribute utility function is continuously 
differentiable and increasing in individual attributes. Also, each 
attribute is partitioned within its range of negotiability. The 
partition of each attribute results in a block of the form 

 jii yy   in the topology. Since we have im blocks for an 

attribute i, the total number of block combinations is equal to




n

i

im
1

. In this case, the most intuitive way to draw the 

decision topology is to use a tuple of blocks in each row of the 
decision topology as shown in Figure 5. The decision topology 

will then have 


n

i

im
1

rows in parallel. The score from such a 

topology mimics the multi-attribute utility function and is 
monotonic in each attribute, as expected. Moreover, 

  1,..., maxmax

11  nn yyyyS  and 

  0,..., minmin

11  nn yyyyS .  

 

Figure 4. An example block representing tradeoff between price and 
mpg for the vehicle buying example. 

 

 

 

 

Figure 5. Decision topology for multi-attribute case (only one row is 
shown). 

If the CDF analogy is used, the proof that DTs are consistent 
with DA can be derived using the arguments for the single 
attribute case. We have 

      

t t
n

n

n

y

y

y

y

nnyy

t

n

t dydyyyuyyS
1

min
1

min

1
...,...,...,..., 11,...,1

 

        t

n

t yyU ,...,1                    (1) 

where  nyy yyu
n

,...,1,...,1
is the joint utility density function as 

defined in Abbas (2009) which is analogous to probability 
density functions. The analogy however, is not applicable to 
utility functions which are not n-increasing (i.e., having a 
negative mixed derivative; see Nelsen, 1999). Because such 
utility functions are common, we provide below a general proof 
that is valid for all continuously differentiable utility functions.  

Assume that we start with the point  minmin

1 ,..., nyy  where the 

utility function and the score  minmin

1 ,..., nyyS  are both zero. 

If the attribute vector is perturbed by a small amount 

 ndydy ,...,1
 in any general direction that keeps the 

attributes in the range of negotiability, the new utility can be 
approximated by 

   n

n

nn dy
y

U
dy

y

U
dyydyyU









 ...,..., 1

1

min

1

min

1
. (2) 

Similarly to the single attribute case, if the first partitioning at 
every point along any attribute is proportional to the partial 
derivative along that attribute, we have 

  nn dyydyyS min

1

min

1 ,...,  

                nn dyydyyU  min

1

min

1 ,..., .        (3) 

As the partitioning gets finer, the approximation of Equation (3) 

keeps improving. As we move on a path from  minmin

1 ,..., nyy  

towards any point  t

n

t yy ,...,1 , the decision topology makes 

successive linear approximations of the utility function, and 

   t

n

tt

n

t yyUyyS ,...,,..., 11  .             (4) 

Equation (4) proves that if the partitioning of the attribute space 
is sufficiently fine, and the distribution of the partitions at any 
point along any direction is proportional to the partial derivative 
of the utility function along that direction, the decision 
topologies will provide the same score with the value of the 
utility function.  

 

… 
 

 
 

Legend: 

 



Page 4 of 8 

 

In practical applications, the decision topology of Figure 5, with 
rows corresponding to each block tuple, can be modified to fine 
tune the tradeoff behavior. Additionally, the topology is not 

necessarily constrained to have 


n

i

im
1

rows in parallel, as 

described earlier. The algorithm we have developed, called 
Evolutionary System Topology Approximation (ESTA) to 
evolve decision topologies from limited data can find creative 
arrangements of blocks which can concisely represent the 
tradeoff information (Pandey and Mourelatos, 2012a). 
Furthermore, the partitioning does not even have to be fine for 
one to approximate a utility function well. We substantiate 
these claims in the results section. 

Some clarifications 

Is a Decision Topology simply a decision tree? 

The answer to this question is no. Decision trees are a visual 
representation of the entire decision-making situation. The 
main function of decision topologies is to replace the utility 
function. Decision trees quickly become intractable as more 
nodes are added while decision topologies give a good picture 
of the decision situation without becoming intractable. In 
decision trees, a decision at a node is made by comparing the 
expected utility from the alternatives downstream the node. In 
that respect, a decision topology can be used in conjunction 
with a decision tree, where utility values are replaced with 
decision topology scores. 

What about uncertainty? 

Uncertainty can be incorporated in the decision topology by 
definition. Similarly to calculating the expectation of a utility 
function in decision analysis, we can calculate the expectation 
of the score provided by the decision topology. If uncertainty 
must be incorporated directly, we can evolve topologies using 
tests (see below) that involve uncertainty. 

3. Assessing Decision Topologies 

We have proven that DTs can approximate utility functions. 
Therefore if the utility function is available, one can fit a DT to it 
using our proposed algorithm. This will help visualize the 
decision problem once a decision is to be made. On the other 
hand, it is possible that the utility function is not available and 
the DTs are to be assessed directly. It is also possible that 
Single Attribute utilities, and equivalently, Decision Topologies 
(SADTs) are available and one must find the Multi-Attribute 
Decision Topology (MADT). We first show the method for 
assessing the MADT directly and then show how it can be 
constructed from SADTs. 

Theoretical Considerations 

If risk attitude is not to be modeled, as in cases where the 
choices are deterministic, the utility functions and the value 
functions are the same (up to a linear transformation). In this 
case, we propose having the decision maker rank different 
multi-attribute tuples according to their tradeoff preferences. 
ESTA can then be used to approximate the topology so that 

the Spearman’s rank correlation between the ranking provided 
by the DM and that provided by a candidate topology is high. 
The output of the algorithm is the topology that provides the 
highest rank correlation with the decision maker’s ranking. 
While ESTA has provable convergence at the limit, we may not 
run the simulation long enough because of time constraints. 
Results are still very good as our recent work has shown 
(Pandey and Mourelatos, 2012b). 

In case the risk attitude must be modeled, we must include 
uncertain choices in the questions asked to the DM. These are 
called lottery questions in the DA literature. The DM is asked a 
combination of deterministic and lottery questions. Table 1 for 
example, shows a small subset of ranking questions. 

Table 1: Sample ranking questions that can be used to assess MADTs 
directly. 

Rank these alternatives in the order of your preference: 

A  11

1 ,..., nyy1y  

B 60% chance of  P

n

P yy 22

1 ,...,2Py  and 40% 

chance of  Q

n

Q yy 22

1 ,...,2Qy  

C  33

1 ,..., nyy3y  

D 10% chance of  P

n

P yy 44

1 ,...,4Py  and 90% 

chance of  Q

n

Q yy 44

1 ,...,4Qy  

E  55

1 ,..., nyy5y  

 

Notice the method does not require a departure from the ESTA 
method that we use for deterministic choices. The relative 
number of uncertain and deterministic options in the 
alternatives is a matter of judgment and the amount of effort 
the assessor and DM are willing to put in. As in any utility 
assessment procedure, the outcomes are a direct function of 
the effort invested. The guarantee of our method is that the 
assessment will monotonically improve with the number of 
questions asked. The assessor should obviously ensure that 
the questions are all very different from each other so all the 
regions within the ranges of negotiability are properly modeled.  

We now come to the issue of assessing MADTs from SADTs. 
It is well known that using the multi-linear expression of 
Keeney and Raiffa (1994) requires that the attributes be 
preferentially and utility independent. These conditions can 
somewhat be relaxed, i.e., other functional forms are possible 
to get MAUFs from SAUFs directly, as shown in Abbas (2009). 
Abbas discusses utility copulas and makes a case for modeling 
MAUFs as joint distributions using copulas. Functionally, many 
utility functions have the same properties as joint distributions 
and therefore copulas, as a result of Sklar’s theorem, can be a 
powerful tool to model them. It is also directly evident that 
SAUFs can be combined using a utility copula to get a multi-
attribute utility copula (MAUF). Certain functional forms where 
the mixed derivative of the MAUF is negative, a condition not 
true for probability distributions, can also be modeled using 
utility copulas. Furthermore, the grounding condition where 
probability copulas are zero when one of the variables is at its 
lowest level, is also not an impediment because, again as 
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Abbas notes, there are utility copulas that do not need to 
satisfy the grounding condition. As such, we do not find any 
reasons to not build MADTs directly from SADTs. 

4. Case Study 

We use a welded beam design example adapted from Deb, 

Pratap and Moitra (2000) with bound constraints  x5g  and 

 x6g  added to the original problem. The problem involves 

simultaneous minimization of the cost (C in dollars) and the 
deflection (D in inches) of the weld. We do not discuss the 
results of the optimization here because our focus is simply to 
find a topology consistent with the utility function. However, we 
use the information that the two attributes C and D can be 

feasibly realized in the ranges of [10, 260] and [0.001, 0.05].  
 
We first define an exponential utility function over each 
attribute as 

 

 


















100

260

1 1

C

eCU                                        (5)  

 


















02.0

05.0

2 1

D

eDU                                        (6)  

and then combine the utilities into a multi-attribute function 

using the following multi-linear form 

      212121 2.05.07.0, UUUUUUU  .           (7) 

We assume that while these utility functions are unknown to 
the assessor, they do model the decision maker’s preferences 
correctly. Notice that U does not satisfy the grounding 
condition, and it also has a negative mixed derivative. We will 
generate survey questions using these utility functions. 
However, using the proof shown before, we get the SADTs 
directly from the derivative characteristics of the utility functions 
in Figure 6. Recall that for the SADTs to work, all we must do 
is partition the domain proportionally to the derivative of the 
utility functions. Table 2 shows this partitioning. 

 

(a) 

 

(b) 

Figure 6. Utility functions associated with the two objectives. The 
utilities are decreasing w.r.t. the attributes without affecting the 

applicability of the method. 

Table 2. Partitioning of the ranges of negotiability of the two attributes 
using the derivative information of Figure 6. 

Cost ($) Deflection (in) 

20 0.005 

120 0.025 

190 0.038 

230 0.045 

250 0.049 

 

Table 3 provides the training set. The DM is asked to rank the 
alternatives in the order of desirability. Of the total of 15 
alternatives, 5 are probabilistic. Notice that the total number of 
alternatives is significantly less than that used in our previous 
work. This is possible because we have already extracted 
useful information from the SADTs (Table 2). 

Table 3. Ranking provided by the DM for the 15 alternatives. 

 

Next the ESTA algorithm is run to create a topology that will 
provide the same rankings (or close to it) as in Table 3. ESTA 
was run with a population size of 350 and a probability of 
mutation of 0.1. The total run-time on a 2.13 GHz dual-core 
Intel Xeon machine was less than a minute. Figure 7 shows 
the topology generated by ESTA. This topology gives a 
Spearman’s rank correlation of 0.97, which is excellent.  
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Figure 7. MADT generated using the responses provided by the 
decision maker. 

Table 4 shows the score and the ranking provided by the best 
MADT found by the ESTA algorithm. The rankings are an 
excellent match, with a very high rank correlation coefficient 
which guarantees that the decisions made using the MADT, 
even under uncertainty, will be the same as those made by the 
decision maker himself.  

Table 4. Score and ranking by best MADT found by ESTA. 

 

Summary/Conclusions 

In this paper, we proposed methods to assess multi-attribute 
decision topologies (MADTs) for making design decisions. The 
authors had recently shown that MADTs are visual, 
theoretically sound replacements of utility functions and are 
consistent with decision analysis at the limit. This paper 
addressed three major challenges in assessing MADTs. We 
showed that MADTs can be directly assessed using rankings 
provided by the decision maker using an evolutionary method 

we have previously proposed. We then showed that 
preferences under uncertainty can be trivially incorporated in 
MADTs by adding probabilistic alternatives in the ranking 
questions. Finally, we showed that if single attribute DTs are 
available, we can extract information from it so that the 
assessment of MADTs is simplified and the DM only ranks a 
few alternatives to obtain the complete MADT. We also 
discussed the theoretical basis behind the assessment method 
we proposed.  

We used a case study of a welded beam design with two 
attributes. With only 15 alternatives (10 deterministic and 5 
probabilistic) we were able to get a MADT with a Spearman’s 
rank correlation of 0.97 with the DM’s rankings. The high value 
of the Spearman’s rank correlation validates our method for 
assessing MADTs from SADTs even under uncertainty. We 
believe that MADTs are a significant contribution to the state-
of-the-art in engineering design decision making. 
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Appendix 

The mathematical formulation of the welded beam example is given below. 
 

Minimize 












bt
D

ltblhC

3

2

1952.2
)(

)14(04811.010471.1)(

x

x

                   

 

subject to     5,,1,0  igi x  

where  Tbtlh ,,,x , and 

  13600)(1  xx g ,   30000)(2  xx g , bhg )(3 x  

 xx cPg  6000)(4
,  Tg 5,10,10,10)(5  xx and   xx 

T
g 0,0,1.0,125.0)(6

  

In the above expressions, 
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  22
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2

2

1
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



 x  

hl2
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1   

    

 



























2
2

22

2

25.0
12

707.02

25.05.0146000

th
l

hl

thll
  

 
bt 2

504000
x  and     30282346.01022.64746 tbtPC x  

 


